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ABSTRACT	
	
	 The	 deep-atmosphere	 Euler	 equation	 set	 has	 been	 derived	 into	 a	 form	
similar	 to	 the	 shallow-atmosphere	Euler	 equation	 set	without	 any	 approximation,	
which	 makes	 it	 more	 convenient	 to	 evolve	 any	 existing	 shallow-atmosphere	
dynamics	 model	 to	 deep-atmosphere	 dynamics.	 The	 deep	 atmospheric	 dynamics	
system	 is	 a	 fully	 non-approximated	 Euler	 equation	 set,	 which	 includes	 all-
dimensional	 Coriolis	 force,	 vertically	 expanded	 cells	 (r=a+z),	 and	 geocentric	
gravitational	 force	 with	 height.	 The	 deep-atmosphere	 Euler	 equation	 in	 spherical	
height	 coordinates	was	 transferred	 into	 spherical	 generalized	vertical	 coordinates	
with	 pseudo	 horizontal	 wind	 in	 NCEP	 Office	 Note	 477	 (Juang	 2014).	 The	 deep-
atmosphere	 continuity	 equation	 in	 generalized	 vertical	 coordinates	 can	 be	 easily	
converted	 into	 a	 shallow-atmosphere-alike	 form	 by	 introducing	 scaled	 horizontal	
winds	and	scaled	height	with	a	hydrostatic	relationship	in	generalized	coordinates	
to	represent	density.	The	relationship	provides	a	coordinate	pressure	change	with	
respect	 to	 scaled	 height	 for	 a	 given	 density.	 From	 this	 relationship	 we	 can	 use	
geopotential	height	to	define	scaled	vertical	motion,	thus	all	the	three-dimensional	
winds	 in	 deep-atmosphere	 dynamics	 can	 be	 replaced	 by	 scaled	 winds.	 Since	 all	
winds	are	using	a	scaled	form,	the	momentum	equations	are	converted	into	scaled	
momentum	equations	with	scaled	terms	plus	some	add-on	terms.		
	
	 Since	 the	 deep-atmosphere	 Euler	 equation	 is	 applied	 to	 the	 whole	
atmosphere,	the	gas	constituents	should	be	flexible	enough	to	consider	gases	in	the	
lower	 atmosphere	 as	 well	 as	 the	 upper	 atmosphere;	 thus	 the	 generalized	 gas	
constants	of	R	and	Cp	should	be	included	in	the	thermodynamics	as	in	Juang	(2011).	
However,	 due	 to	 time	 splitting	 for	 the	 adiabatic	 dynamics	 solver	 and	 diabatic	
physics	 solver,	 enthalpy	 may	 not	 be	 necessary	 for	 thermodynamic	 variable,	 any	
form	of	temperature	can	be	used	as	prognostic	thermodynamic	variable,	as	long	as	
the	 thermodynamic	 equation	 is	 satisfied.	Combined	with	 the	 shallow-atmosphere-
alike	 form	 of	 the	 deep-atmosphere	 continuity	 equation,	 thermodynamic	 equation,	
the	three	scaled	momentum	equations,	and	equation	of	state	 for	the	 ideal	gas	 law,	
the	 non-approximated	 shallow-atmosphere-alike	 form	 of	 deep-atmosphere	 Euler	
equation	 is	 given	 for	 easy	 implementation	 of	 deep-atmosphere	 dynamics	 into	
existing	shallow-atmosphere	dynamics	models.	
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1.	Introduction	
	
	 We	are	in	an	era	where	nonhydrostatic	atmospheric	modeling	is	developing	
and	 used	 for	 operational	 numerical	 weather/climate	 prediction.	 Computing	
resources	are	increasing	to	the	point	of	providing	high-resolution	computations,	it	is	
reasonable	 to	 consider	 nonhydrostatic	 modeling	 for	 the	 National	 Centers	 for	
Environmental	Prediction	(NCEP)	operational	model	suite.	However,	certain	aspects	
of	nonhydrostatic	modeling	are	 implemented	with	 limiting	approximation	 such	as	
deep-atmosphere	 requirements.	 The	 NCEP	 encompass	 SWPC	 (Space	 Weather	
Prediction	Center)	mission,	which	requires	whole	atmosphere	modeling	to	provide	
vertical	 extended	domain	coupling	with	 ionosphere	models;	 thus,	 it	 is	 essential	 to	
model	the	atmosphere	with	deep-atmosphere	dynamics.		
	
	 The	 first	 to	 advocate	 for	 deep-atmosphere	 modeling	 appeared	 in	 the	
literature	 as	 Staniforth	 and	 Wood	 (2003)	 with	 a	 generalized	 vertical	 coordinate,	
Wood	 and	 Staniforth	 (2003)	 with	 a	 mass-based	 vertical	 coordinate,	 and	
furthermore	they	provided	papers	on	the	treatment	of	vector	equations	for	a	deep-
atmosphere	 and	 semi-Lagrangian	 model	 in	 Staniforth	 and	 Wood	 (2010)	 for	 the	
momentum	 equation,	 and	 in	 Woods	 and	 Staniforth	 (2010)	 for	 the	 kinematic	
equation.	Also	deep-atmosphere	dynamics	has	been	used	in	an	operational	suite	by	
UK	Met	Services	(Davies	et	al.	2005)	 for	global	and	regional	modeling	as	a	unified	
model.	 	NCEP	considered	deep	atmosphere	dynamics	 in	 the	Global	Spectral	Model	
with	Office	Note	477	(Juang	2014)	and	continue	to	develop	atmosphere	dynamics	in	
Global	Forecast	System	(GFS).		
	
	 The	difficulty	in	implementing	deep-atmosphere	dynamics	is	the	necessity	of	
allowing	 for	 a	 geo-centric	 radius,	 r,	 for	 all	 terms	 in	 the	 deep-atmosphere	 Euler	
equation	set,	which	may	require	new	approaches	and/or	new	numerical	techniques.	
The	 idea	 of	 using	 a	 mapping	 factor	 to	 have	 equal	 grid	 spacing	 to	 provide	 easy	
integration	 in	 the	 horizontal	 is	 similar	 to	 using	 scaled	 prognostic	 variables	 in	 the	
deep-atmosphere	 Euler	 equation	 to	 allow	 a	 shallow-atmosphere-alike	 form	 in	 the	
vertical.	This	idea	makes	deep-atmosphere	dynamics	more	easily	implemented	in	a	
shallow-atmosphere	dynamics	system,	thus	most	or	all	of	the	dynamics	routines	in	
the	shallow-atmosphere	form	can	be	re-used	to	solve	deep-atmosphere	dynamics.	It	
is	 a	 convenient	 and	 effective	 way	 to	 implement	 deep-atmosphere	 dynamics	 into	
existing	shallow-atmosphere	models,	such	as	the	NCEP	GSM	(Global	Spectral	Model)	
and	its	enthalpy	version,	called	the	NCEP	WAM	(Whole	Atmosphere	Model).	
	
	 This	 manuscript	 is	 an	 extension	 of	 NCEP	 Office	 Note	 477	 on	 a	 deep-
atmosphere	nonhydrostatic	dynamics	system	with	a	practical	approach.		The	deep-
atmosphere	 dynamics	 with	 a	 pseudo-spherical	 coordinate	 in	 the	 horizontal	 and	
generalized	 vertical	 coordinates	 in	 the	 vertical	 is	 illustrated	 in	 Section	 2.	 The	
introduction	of	scaled	prognostic	variables,	including	height	and	three-dimensional	
winds	 is	 given	 in	 Section	 3.	 The	 scaled	 momentum	 equations	 in	 shallow-
atmosphere-alike	form	are	given	in	Section	4.	The	inclusion	of	the	thermodynamic	
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equation	with	multi	gas	constituents	due	 to	deep-atmosphere	concerns	 is	given	 in	
Section	5.	Section	6	wraps	up	the	manuscript	with	conclusions	and	discussion.	
	
	
2.	The	deep-atmosphere	Euler	equation	 in	pseudo-spherical	and	generalized	
vertical	coordinates	
	
	 Based	 on	 deep-atmosphere	 Euler	 equation	 in	 spherical	 coordinates	 with	 a	
generalized	vertical	 coordinate	 transfer	 as	 shown	 in	NCEP	Office	Note	477	 (Juang	
2014),	the	deep-atmospheric	Euler	equation	in	pseudo-spherical	coordinate	can	be	
written	as		
du*

dt
+
u*w
r
 − fsv

* + fc
*w+ 1

ρ
 ∂ p
r∂λ

−
∂ p
∂ζ

∂ζ
∂r

∂r
r∂λ

⎛

⎝
⎜

⎞

⎠
⎟ = Fu 		 	 	 	 	 (2.1)	

dv*

dt
 + v

*w
r

 + fsu
* +m2 s*2

r
sinφ + 1

ρ
 ∂ p
r∂ϕ

−
∂ p
∂ζ

∂ζ
∂r

∂r
r∂ϕ

⎛

⎝
⎜

⎞

⎠
⎟  = Fv 	 	 	 	 (2.2)	

dw
dt

 −m2 s*2

r
  −m2 fc

*u* + 1
ρ
∂ p
∂ζ

∂ζ
∂r
 +g  = Fw 	 	 	 	 	 	 (2.3)	

dCpT
dt

−
1
ρ
dp
dt
= Fh 	 	 	 	 	 	 	 	 	 (2.4)	

∂ρ*

∂t
+m2

∂ρ*
u*

r
∂λ

+m2
∂ρ*

v*

r
∂ϕ

+
∂ρ*ζ

•

∂ζ
= Fρ

* 	 	 	 	 	 	 (2.5)	

dqi
dt

= Fqi 	 	 	 	 	 	 	 	 	 	 (2.6)	

p = ρRT 	 	 	 	 	 	 	 	 	 	 (2.7)	
where	
d()
dt

=
∂()
∂t

+m2u* ∂()
r∂λ

+m2v* ∂()
r∂ϕ

+ζ
• ∂()
∂ζ

	 	 	 	 	 	 (2.8)	

u* = ucosφ  ;   u = rcosφ dλ
dt
	 	 	 	 	 	 	 	 (2.9)	

v* = vcosφ  ;  v = r dφ
dt
		 	 	 	 	 	 	 	 (2.10)	

m =
1

cosφ
	 	 	 	 	 	 	 	 	 	 (2.11)	

∂
∂ϕ

= cosφ ∂
∂φ

=
1
m

∂
∂φ

	 	 	 	 	 	 	 	 (2.12)	

ρ* = ρ
r2

a2
∂r
∂ζ

	 	 	 	 	 	 	 	 	 	 (2.13)	

fs = 2Ωsinφ 	 	 	 	 	 	 	 	 	 	 (2.14)	
fc
* = 2Ωcos2φ 	 	 	 	 	 	 	 	 	 (2.15)	
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s*
2

= u*
2

+ v*
2

	 	 	 	 	 	 	 	 	 	 (2.16)	

g = g0
a2

r2
	 	 	 	 	 	 	 	 	 	 (2.17)	

These	equations	and	how	they	are	derived	from	height	vertical	coordinates	can	be	
found	in	detail	in	Staniforth	and	Wood	(2003)	and	Juang	(2014).		
	
	 The	original	continuity	equation	in	spherical	coordinates	explicitly	shows	the	
vertical	expanded	structure	as	
∂ρ
∂t
+

∂ρu
rcosφ∂λ

+
∂ρvcosφ
rcosφ∂φ

+
∂ρr2w
r2∂r

= Fρ 	 	 	 	 	 	 (2.18)	

But	 the	 fourth	 term	 on	 the	 left	 hand	 side	 is	 numerically	 complicated	 to	 solve.	
Transferring	 it	 into	 a	 generalized	 vertical	 coordinate	 can	 convert	 the	 vertical	
expanding	form	into	an	implicit	form	without	approximation	as	

∂ ρr2 cosφ ∂r
∂ζ

⎛

⎝
⎜

⎞

⎠
⎟

∂t
+
∂ ρr2 cosφ ∂r

∂ζ

⎛

⎝
⎜

⎞

⎠
⎟λ
•

∂λ
+
∂ ρr2 cosφ ∂r

∂ζ

⎛

⎝
⎜

⎞

⎠
⎟φ
•

∂φ
+
∂ ρr2 cosφ ∂r

∂ζ

⎛

⎝
⎜

⎞

⎠
⎟ζ
•

∂ζ
= Fρ 	 (2.19)	

and	it	can	be	transferred	into	Eq.	(2.5)	by	dividing	a2 cosφ and	with	Eq.	(2.12)	(see	
Appendix	A	in	Juang	2014	for	details).	Since	we	are	dealing	with	deep-atmosphere	
dynamics,	we	 can	 set	 entire	 equation	 to	 be	 only	 for	 dynamics,	 so	 the	 entire	 right	
hand	 side	 of	 F	 can	 be	 set	 to	 be	 zero	 for	 the	 rest	 of	 the	 manuscript	 with	 a	 few	
exceptions	which	we	will	mention.	
	
	
3.	The	introduction	of	scaled	prognostic	variables	
	 	
	 From	 the	 continuity	 equation	 in	 pseudo-spherical	 coordinate,	 it	 is	 easy	 to	
assign	a	pressure	with	respect	to	the	generalized	vertical	coordinate	as	
∂
⌣p
∂ζ

= −ρ*g0 	 	 	 	 	 	 	 	 	 	 (3.1)	

where	 the	 pressure	 (pressure	 with	 smile	 on	 top)	 may	 be	 called	 “coordinate	
pressure”	 which	 we	 will	 use	 to	 define	 coordinates	 in	 relation	 to	 generalized	
coordinates.	Putting	Eq.	(3.1)	into	Eq.	(2.5),	we	have	the	continuity	equation	as	

∂
∂
⌣p
∂ζ
∂t

+m2
∂
∂
⌣p
∂ζ

u*

r
∂λ

+m2
∂
∂
⌣p
∂ζ

v*

r
∂ϕ

+
∂
∂
⌣p
∂ζ

ζ
•

∂ζ
= 0 	 	 	 	 	 	 (3.2)	

which	 is	 very	 close	 to	 the	 shallow-atmosphere	 form	but	 is	not	quite	 complete.	To	
make	the	deep-atmosphere	continuity	equation	into	the	same	form	as	the	shallow-
atmosphere	equation,	we	define	scaled	horizontal	wind	as		
⌣u = a

r
u* 	 	 	 	 	 	 	 	 	 	 (3.3)	

⌣v = a
r
v* 	 	 	 	 	 	 	 	 	 	 (3.4)	
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and	by	putting	them	into	Eq.(3.2),		we	obtain	

∂
∂
⌣p
∂ζ
∂t

+m2
∂
∂
⌣p
∂ζ
⌣u

a∂λ
+m2

∂
∂
⌣p
∂ζ
⌣v

a∂ϕ
+
∂
∂
⌣p
∂ζ

ζ
•

∂ζ
= 0 	 	 	 	 	 	 (3.5)	

which	 is	 completely	 the	 same	 form	as	 the	 shallow-atmosphere	Euler	 equation	 for	
the	 continuity	 equation,	 except	 we	 are	 using	 coordinate	 pressure	 and	 scaled	
horizontal	 winds.	 In	 this	 form,	 Eq.	 (3.5),	 we	 can	 apply	 all	 existing	 numerical	
techniques	and	computational	methods	to	solve	it,	since	all	terms	are	the	same	as	in	
shallow-atmosphere	 system.	 The	 scaled	 winds	 can	 be	 obtained	 if	 we	 have	 the	
vertical	location	of	r,	which	can	be	obtained	by	our	definition	of	coordinate	pressure	
in	Eq.	(3.1).	
	
	 Though	Eq.	 (3.1)	 is	used	to	replace	density	 in	Eq.	 (2.5)	 to	get	a	generalized	
form,	it	 is	also	defined	in	the	relationship	between	coordinate	pressure	and	height	
based	on	given	density	as	

∂
⌣p
∂ζ

= −ρ*g0 = −ρ
r2

a2
∂r
∂ζ
 g0 = −ρg0

∂
r3

3a2
∂ζ

 = −ρ ∂
⌣
Φ
∂ζ

	 	 	 	 	 (3.6)	

and	we	can	give	a	solution	for	the	scaled	geopotential	as	
⌣
Φ=

g0 r
3 − a3( )
3a2

=
g0 r − a( ) r2 + ra+ a2( )

3a2
	 	 	 	 	 	 (3.7)	

thus,	when	r	is	close	to	a,	
⌣
Φ≅ g0 r − a( ) = g0z 	is	the	same	as	the	shallow-atmosphere	

definition.	And	the	vertical	motion	in	the	scaled	geopotential	term	can	be	written	as	
d
⌣
Φ
dt

=
g0r

2

a2
dr
dt
= g0

r2

a2
w 	 	 	 	 	 	 	 	 (3.8)	

by	analogy,	we	can	define	the	scaled	vertical	motion	from	scaled	geopotential	as	
d
⌣
Φ
dt

= g0
⌣w 	 	 	 	 	 	 	 	 	 	 (3.9)	

thus,	we	define	scaled	vertical	motion	as	
⌣w = r

2

a2
w 	 	 	 	 	 	 	 	 	 	 (3.10)	

Thus,	coordinate	pressure	or	mass	pressure,	and	three-dimensional	winds	are	all	in	
scaled	 form,	 as	 the	 deep-atmosphere	 continuity	 equation	 becomes	 a	 shallow-
atmosphere-alike	form.	
	
	
4.	The	deep-atmosphere	Euler	equation	in	shallow	form	
	 	
	 From	Eqs.	(3.5)	and	(3.9),	we	realize	that	the	variables	for	coordinate	height	
and	three	dimensional	winds	are	in	scaled	form.	And	continuity	equation	is	already	
in	shallow-atmosphere-alike	form	in	Eq.	(3.5),	thus	we	only	have	to	provide	scaled	
prognostic	 momentum	 equations	 to	 close	 the	 system.	 The	 total	 derivative	 of	 the	
three-dimensional	winds	can	be	derived	as	the	following	
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d⌣u
dt

=
a
r
du*

dt
−
au*

r2
dr
dt
=
1
ε
du*

dt
−
⌣u ⌣w
ε3a

	 	 	 	 	 	 	 (4.1)	

d⌣v
dt
=
a
r
dv*

dt
−
av*

r2
dr
dt
=
1
ε
dv*

dt
−
⌣v ⌣w
ε3a

	 	 	 	 	 	 	 (4.2)	

d ⌣w
dt

=
r2

a2
dw
dt

+
2r
a2
w2 = ε 2

dw
dt

+
2 ⌣w2

aε3
	 	 	 	 	 	 	 (4.3)	

where	

ε =
r
a
	 	 	 	 	 	 	 	 	 	 	 (4.4)	

Next,	we	put	Eqs.	(2.1),	(2.2)	and	(2.3)	into	Eqs.	(4.1),	(4.2),	and	(4.3)	respectively,	
and	we	obtain	
d⌣u
dt

= −2
⌣u ⌣w
ε3a

δ − fc
*
⌣w
ε3 δ + fs

⌣v − 1
ε 2

1
ρ
∂ p
a∂λ

+ ∂p
∂
⌣p
∂
⌣
Φ

a∂λ
⎛

⎝
⎜

⎞

⎠
⎟ 	 	 	 	 	 (4.5)	

d⌣v
dt
= −2

⌣v ⌣w
ε3a

δ − fs
⌣u −m2

⌣s
2

a
sinφ − 1

ε 2
1
ρ
∂ p
a∂ϕ

+
∂p
∂
⌣p
∂
⌣
Φ

a∂ϕ
⎛

⎝
⎜

⎞

⎠
⎟ 	 	 	 	 (4.6)	

d ⌣w
dt

= 2
⌣w2

ε3a
δ +m2ε3

⌣s
2

a
δ +m2ε3 fc

*⌣uδ + g0
∂p
∂
⌣p
ε 4 −1

⎛

⎝
⎜

⎞

⎠
⎟ 	 	 	 	 	 (4.7)	

where	δ =1	is	the	default	for	deep-atmosphere	dynamics.	When	ε =1 	everywhere	in	
a	shallow-atmosphere	Euler	equation	set,	δ = 0 	is	required	for	the	deep-atmosphere	
Euler	equation	set	to	reduce	it	to	a	traditional	shallow-atmosphere	Euler	equation.			
	
	 Eqs.	 (3.5),	 (4.5),	 (4.6),	 and	 (4.7)	 are	 a	 deep-atmosphere	 dynamics	 Euler	
equation	set	in	shallow-atmosphere-alike	form	for	the	continuity	equation	and	three	
momentum	equations	in	three	dimensions,	to	form	the	deep-atmosphere	dynamics	
in	shallow-atmosphere-alike	form.	To	close	the	system,	we	need	a	thermodynamics	
equation	and	idea	gas	law.		
	
	
5.	Generalized	gas	tracer	in	thermodynamic	equation	for	deep-atmosphere	
	 	
	 For	 deep-atmosphere	 dynamics	 equations,	 the	 so-called	 dry	 air	 standard	
atmosphere	 may	 not	 be	 precisely	 right	 for	 the	 vertically	 extended	 whole	
atmosphere.	 The	 flexibility	 of	 different	 gas	 constituents	 present	 in	 the	 low	
atmosphere	as	well	as	deep	atmosphere	up	to	several	hundred	kilometers	should	be	
considered.	 To	 illustrate	 this,	we	 should	 start	 from	 the	 ideal	 gas	 law	 and	 internal	
energy	equation	(thermodynamics	equation),	for	example,	as	in	Juang	(2011).	
	
	 The	ideal	gas	rule	and	composited	multi	constituent	gases	can	be	written	as	
p = ρRT 	 	 	 	 	 	 	 	 	 	 (5.1)	

R = 1− qi
i=1

n

∑
⎛

⎝
⎜

⎞

⎠
⎟R0 + qiRi

i=1

n

∑ 	 	 	 	 	 	 	 	 (5.2)	

and	thermodynamic	equation	should	be	
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dCPT
dt

−
RT
p
dp
dt
= FT 	 	 	 	 	 	 	 	 	 (5.3)	

CP = 1− qi
i=1

n

∑
⎛

⎝
⎜

⎞

⎠
⎟CP0

+ qiCPi
i=1

n

∑ 	 	 	 	 	 	 	 	 (5.4)	

where	 R0 	and	CP0 	are	 for	 the	 base	 gas	 constituent	 in	modeling	 and	Ri 	and	CPi 	are	
for	 the	 ith	 gas	 constituent	 with	 total	 n	 gas	 constituents	 as	 model	 tracers.	 For	
example	 in	 Table	 1,	 the	 first	 columns	 with	 values	 are	 the	 base	 air	 gases	 in	 the	
current	 operational	 GFS	 GSM	 (upper	 panel)	 and	 in	 the	 experimental	 WAM	 GSM	
(bottom	panel).	And	cloud	water	is	not	a	gas	constituent	but	a	model	tracer,	so	there	
is	no	Ri	and	Cpi	values	in	the	table,	others	are	gas	cinstituents	with	values	of	Ri	and	
Cpi.	
	
	 To	solve	Eq.	(5.3)	including	the	source	term	in	the	right	hand	side,	combining	
CPT 	as	 the	 enthalpy	 may	 be	 the	 only	 way	 to	 simplify	 the	 solution	 as	 in	 Juang	
(2011).	However,	in	practice,	most	numerical	weather	and	climate	models	separate	
adiabatic	 dynamic	 solver	 and	 diabatic	 model	 physics	 solver,	 as	 a	 time	 splitting	
scheme,	thus	CP 	can	be	separated	out	from	the	total	derivative.	We	can	illustrate	it	
under	adiabatic	dynamics	first	as	follows.	While	for	adiabatic	conditions	
dqi
dt

= 0 	 	 	 	 	 	 	 	 	 	 (5.5)	

so	
dCp
dt

= Cpi
dqi
dt

⎛

⎝
⎜

⎞

⎠
⎟

i=0

n

∑ = 0 	 	 	 	 	 	 	 	 (5.6)	

dR
dt

= Ri
dqi
dt

⎛

⎝
⎜

⎞

⎠
⎟

i=0

n

∑ = 0 	 	 	 	 	 	 	 	 	 (5.7)	

then	
dCPT
dt

−
RT
p
dp
dt
=CP

dT
dt

+T dCP

dt
−
RT
p
dp
dt
=CP

dT
dt

−
RT
p
dp
dt
= 0 	 	 	 (5.8)	

and	the	above	equation	also	can	be	written	as	
d lnT
dt

−
R
CP

d ln p
dt

= 0 	 	 	 	 	 	 	 	 	 (5.9)	

	
	 From	Eq.	(5.9),	we	can	define	potential	temperature	as	the	following	

θ =
T
π
	 	 	 	 	 	 	 	 	 	 	 (5.10)	

where	

π =
p
p0

⎛

⎝
⎜

⎞

⎠
⎟

R
Cp
	 	 	 	 	 	 	 	 	 	 (5.11)	

and	R	and	Cp	have	to	be	total	values	including	all	gas	constituents,	so	that	
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d lnθ
dt

=
d lnT
dt

−
d lnπ
dt

=
d lnT
dt

−
R
Cp

d ln p− ln p0( )
dt

=
d lnT
dt

−
R
Cp

d ln p
dt

	 	 (5.12)	

which	is	the	same	as	Eq.	(5.9),	so		
d lnθ
dt

= 0 	 	 	 	 	 	 	 	 	 	 (5.13)	

is	 a	potential	 temperature	 conservation.	And	 it	 is	 easy	 to	 expand	 the	definition	of	
virtual	potential	temperature	by	
p = ρRT = ρR0Tv 	 	 	 	 	 	 	 	 	 (5.14)	
then	putting	the	above	definition	of	T	and	Tv	into	Eq.	(5.9),	we	have	

d ln R0Tv
R

dt
−
R
CP

d ln p
dt

=
d ln R0

R
dt

+
d lnTv
dt

−
R
CP

d ln p
dt

=
d lnTv
dt

−
R
CP

d ln p
dt

= 0 		 (5.15)	

And	 we	 find	 the	 total	 R	 and	 Cp	 are	 still	 used	 to	 define	 pi	 for	 virtual	 potential	
temperature	 definition	 based	 on	 adiabatic	 conditions	 for	 the	 thermodynamics	
equation.	
	
	
6.	Conclusions	and	discussion	
	
	 This	manuscript	provides	 further	 information	and	techniques	to	 implement	
deep-atmosphere	 dynamics	 into	 any	 existing	 shallow-atmosphere	 model.	 Even	
though	 the	dynamics	are	derived	under	 spherical	Gaussian	horizontal	 coordinates	
and	 generalized	 vertical	 coordinates,	 the	 idea	 of	 scaled	winds	 to	 allow	 a	 shallow-
atmosphere-alike	form	of	the	deep-atmosphere	Euler	equation	can	be	applied	to	any	
coordinates	 and	 any	 global	 and	 regional	 models.	 The	 shallow-atmosphere-alike	
form	 of	 the	 deep-atmosphere	 Euler	 equation	 with	 parameters	 can	 be	 reduced	 to	
shallow-atmosphere	dynamics	as	long	as	delta=0	and	epsilon=1	in	the	equation	set.	
	
	 In	addition	to	the	scaled	momentum	equations	in	shallow-atmosphere-alike	
form,	 the	 generalized	 multi-gas	 constituents	 thermodynamics	 equation	 has	 to	
accompany	 the	 deep-atmosphere	 dynamics,	 because	 deep-atmosphere	 dynamics	
should	 be	 used	 to	 resolve	 the	 whole	 atmosphere	 in	 the	 situation	 where	 the	
atmospheric	gas	constituents	need	to	be	flexible	to	include	both	the	low	atmosphere	
and	upper	atmosphere.		And	one	thing	to	be	noted	is	that	the	definition	of	potential	
temperature	 should	 follow	 the	 thermodynamic	 equation	 for	 adiabatic	 conditions,	
with	 the	 result	 that	 pi,	 the	 Exner	 function,	 should	 be	 defined	 by	 using	 total	 gas	
constants	 and	 the	 total	 gas	 specific	 heat	 for	 constant	 pressure	 of	 all	 gases.	 	Using	
only	the	dry-air	gas	constant	and	specific	heat	to	define	potential	temperature	is	an	
approximation,	 and	 not	 that	 accurate,	 because	 this	 definition	 of	 potential	
temperature	 doesn’t	 satisfy	 the	 thermodynamic	 equation	 for	 adiabatic	 conditions,	
which	 requires	 using	 values	 of	 R	 and	 Cp	 for	 total	 gas	 constituents	 in	 modeling.		
Finally,	 this	 non-approximated	 shallow-atmosphere-alike	 form	 of	 the	 deep-
atmosphere	 Euler	 equation	 set	 provides	 an	 easy	 way	 to	 implement	 deep-
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atmosphere	dynamics	into	the	shallow-atmosphere	system	and	can	be	applied	into	
existing	NCEP	shallow-atmosphere	models.	
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	 N2+O2+…	 vapor	 O3	 clwr	

Ri	 286.05	 461.50	 173.22	 0.0	

Cpi	 1004.6	 1846.0	 820.24	 0.0	

	 N2+…	 vapor	 O3	 clwr	 O	 O2	

Ri	 296.80	 461.50	 173.22	 0	 519.67	 259.84	

Cpi	 1039.6	 1846.0	 820.24	 0	 1299.2	 918.10	

	
Table	 1:	 list	 of	 R	 and	 Cp	 for	 all	 model	 tracers	 starting	 in	 the	 third	 column	 and	

continuing	to	the	right.	The	second	column	contains	base	air	constituents	for	
the	GFS	GSM	in	the	upper	panel	and	WAM	GSM	in	the	bottom	panel.	clwr	is	a	
tracer	of	cloud	water,	which	is	not	gas	constituent,	so	there	are	no	R	and	Cp	
values	assigned	to	it.	




